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RESEARCH ARTICLE

Land cover change detection in the Aralkum with multi-source satellite datasets
Fabian Löw, Dimo Dimov, Shavkat Kenjabaev, Sherzod Zaitov, Galina Stulina and Viktor Dukhovny

Department of Scientific Research SIC-ICWC, Tashkent, Uzbekistan

ABSTRACT
The Aral Sea, once the fourth largest freshwater lake on Earth, has lost circa 90% of its original water 
surface in 1960. Maps of different land cover categories provide a suitable baseline to plan and 
implement effective measures to combat ongoing desertification, such as reforestation of dried 
out Aral Sea soils. In this study, we used satellite-based remote sensing data and applied a machine 
learning method (Random Forest) to map land cover in the Aralkum in 2020. We tested different 
satellite data from optical (Landsat-8, Sentinel-2) and Radar instruments (Sentinel-1) and trained 
a random forest model for classifying different combinations of these data sets into ten distinct 
land cover classes. We further calculated per-pixel uncertainty based on posterior classification 
probability scores. An accuracy assessment, based on in-situ data, revealed that the average overall 
accuracy of land cover maps was 86.8%. Fusing optical and radar instruments achieved the highest 
overall accuracy (88.8%, with lower/higher 95% confidence interval values of 87.6%/89.9%, and 
a Kappa value of 0.865. Classification uncertainty was lower in more homogeneous landscapes (i.e. 
large expanses of a single land cover class like water or shrubland). Only around 9% of the study 
area was still water in 2020, while 32% was covered by saline soils with high erosion risk. Several 
potential applications of this land cover map in the Aralkum exist – spanning many areas of 
environmental impact assessment, policy, and planning and management or afforestation. This 
methodological framework can similarly provide a useful template for more broadly assessing 
large-scale, land dynamics at high-resolution in the entire Aralkum and surrounding areas.

ARTICLE HISTORY 
Received 17 June 2021  
Accepted 7 November 2021 

KEYWORDS 
Aral sea; google earth 
engine; ground truth data; 
land cover; remote sensing; 
random forest

1. Introduction

The Aral Sea was once the fourth largest freshwater 
lake on Earth, with an area of approx. 67,000 km2 in 
1960 (Micklin 2016). It has lost circa 90% of its original 
water volume over the past six decades as a result of 
massive human intervention in the water balance of 
the Aral Sea basin, e.g. for the development of irri-
gated lands alongside the two major tributaries of the 
lake, Amudarya and Syrdarya, and hydropower pro-
duction (Dukhovny and de Schutter 2011; Micklin 
2016; Dimovska 2019). The area of exposed, dry 
seabed reached 60,000 km2 in 2009 (Löw et al. 
2013), ultimately resulting in the emergence of 
a new desert, the Aralkum. This caused a series of 
severe environmental issues (Breckle et al. 2012). The 
hydrological and soil morphological changes that 
occurred during and after desiccation gave rise to 
new terrestrial surfaces that are exposed to varying 
degrees of soil erosion risk from wind (Dukhovny et al. 
2008). Indeed, in Central Asia the Aralkum became 
one of the major sources of dust and salt storms 
(Spivak et al. 2012; Groll, Opp, and Aslanov 2013; 

Issanova et al. 2015; Ge et al. 2016; Shi et al. 2020; 
Zhang et al. 2020; Karami et al. 2021), emissions of 
organohalogen substances from dried salty soils 
(Kotte et al. 2012), and created an ideal habitat for 
locust breeding (Löw et al. 2016).

One potential mitigation measure to address the 
ongoing desertification and wind erosion is large- 
scale afforestation of the dried seabed. Under the 
framework of the Concept of Transforming the Aral 
Sea Region with Ecological Innovations and 
Technologies together with Green Aral Sea Initiative 
(UNDP, 2021), systematic work is currently underway 
to establish protective forests in order to stabilize the 
environment and restore the natural balance to the 
affected soil. As a result, more than 1 million hectares 
of land have been prepared for planting, 461,000 hec-
tares have been reforested, including 93 km of pro-
tective fences, and in 2019, 420 hectares of Saxaul 
nurseries were established, with planting continuing 
through the spring of 2020 by a decree the Cabinet 
Ministries of the Republic of Uzbekistan (LexUZ 2019). 
The planning of such measures, however, requires 
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identifying and mapping of not only land cover in the 
Aralkum at high risk for soil erosion, but also that 
which can support the planting of appropriate vege-
tation such as black Saxaul shrubs (Haloxylon aphyllu-
min) (Chang et al. 2019).

Recent studies used satellite remote sensing to 
monitor the decrease in the water surface, water 
level, and related change in evaporation and increas-
ing surface temperature arising from the desiccation of 
the Aral Sea (Jin et al. 2017; Singh et al. 2018; Deliry 
et al. 2020). Further studies mapped land cover change 
in the Aralkum and surrounding areas with optical 
satellite images (Löw et al. 2016; Shen et al. 2019), or 
identified potential areas for establishing vegetation 
(Kim et al. 2020). Usually, these studies calculate vege-
tation indices such as the Normalized Difference 
Vegetation Index (NDVI) (Rouse et al. 1974) and other 
indices from satellite observations to separate different 
land cover categories (Löw et al. 2016; Shen et al. 
2019). This is because these indices support the separa-
tion of different land cover categories, which are char-
acterized by different vegetation types and densities, 
and which have different reflectance values in different 
parts of the electromagnetic spectrum. The classifica-
tion of satellite imagery in these studies was performed 
by applying different supervised image classification 
methods, mostly in combination with machine learn-
ing algorithms such as random forest (RF) (Breiman 
2001) or support vector machines (SVM) (Cortes and 
Vapnik 1995). The reported overall accuracies in studies 
using these algorithms range from 79% (Shen et al. 
2019) to 95% (Löw et al. 2016). This enabled land cover 
change mapping in the whole Aralkum desert with 
a high classification accuracy.

Previous, satellite-based land cover assessments 
(e.g. Löw et al. 2013) revealed that within 8 years 
(2000–2008), the landscape had changed dramati-
cally: in 2000, the Aral Sea and smaller water bodies 
still covered a huge part of the study area (circa 
29.000 km2, i.e. 41% or the Aralkum), but by 2008 
they had decreased significantly (circa 13,000 km2, 
19%), leaving behind only small water bodies, such 
as the lakes Ribachie, Dzhyltyrbas, and Sudochie. 
Vegetation cover and species composition is influ-
enced by on-going primary succession of the dried 
seabed and recent satellite vegetation assessments 
indicate a regrowth in vegetative cover such as in 
the eastern part of the Aralkum (Kim et al. 2020).

Despite these technological advancements, 
a sound understanding of the soil erosion risk in 
the Aralkum nevertheless requires land cover maps 
with more distinct land cover categories at a high 
spatial resolution (Dukhovny et al. 2008). The lim-
ited or non-availability of in-situ reference data – 
including soil analysis – often hampers the creation 
of such detailed maps, due to the associated costs 
of collecting ground-truth reference data. 
Complicating matters, satellite data availability for 
the Aralkum is limited by cloud cover in the winter 
season and frequent dust storms and haze in the 
summer season, limiting the use of optical instru-
ments. It is for these reasons that previous studies 
focus either on images from the summer seasons 
(Shen et al. 2019) or moderate resolution images 
with a high revisit frequency that allow for certain 
interpolation techniques that can address cloud 
cover and data gaps (Löw et al. 2013, 2016).

With open satellite archives such as those provided 
by the National Aeronautics and Space 
Administration (NASA) (Landsat – 30 m) or the 
European Space Agency (ESA) (Sentinel-1 and 2– 
10 m), an increasing amount and variety of high- 
resolution satellite remote sensors have recently 
become available. Their full potential, however, has 
not yet been leveraged for Aralkum land cover map-
ping. Against this backdrop, this study combines 
cloud-based (i.e. Google Earth Engine, GEE) and local 
computational workflows to map land cover at high 
spatial resolution in the Aralkum. The main objectives 
are as follows:

(i) To evaluate and compare different remote sen-
sing data sets for land cover mapping;

(ii) To map land cover in the observation period 
2020;

(iii) To discuss the results and make recommenda-
tions for future action.

2. Study area

The study area is the Aralkum, i.e. the desert that 
emerged within the Aral Sea border of 1960 
(Figure 1). The remaining portions of the Aral Sea 
and the newly formed Aralkum are located in 
Central Asia. In the literature, the Aral Sea surface in 
1960 is usually placed between approximately 67,000 
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and 68,000 km2, depending on the data source and 
methodology used to estimate its area (Létolle et al. 
2007; Micklin 2010).

The study area is characterized by continental 
climatic conditions with cold winters and hot sum-
mers. The average annual temperature in the 
southern portion (meteorological station “Moynak” 
in Uzbekistan, 59.02° E, 43.47° N) is 11.7°C, with 
highly variable annual precipitation falling between 
60 and 140 mm. In the northern portion (meteor-
ological station “Aralskoe More” in Kazakhstan, 
61.67° E, 46.78° N) the average annual temperature 
is 7.8°C, and the average annual precipitation is 
141 mm. Potential annual evaporation rates of 
800–1,100 mm in the northern portion and of 
1,000–1,300 mm in the southern portion are typical 
(Breckle et al. 2012).

3. Datasets used

3.1. In-situ reference data

A key dataset for this study was a comprehensive 
set of ground reference data from field visits in the 
Aralkum, which was used for calibrating and vali-
dating the applied remote sensing methods. 
A team of specialists from Scientific-Information 
Center of the Interstate Commission for Water 
Coordination of Central Asia (SIC-ICWC) and the 

International Innovation Center Prearalie under 
the President the Republic of Uzbekistan (IICP), 
Karakalpakistan Hydro-geological expedition, 
Institute of Bioorganic Chemistry of the Academy 
of Sciences of Republic of Uzbekistan, visited the 
Uzbek portion of the Aralkum in October 2019 and 
June 2020 to perform the ground measurements 
(Dukhovny, Stulina, and Kenjabaev 2020). The loca-
tion of the in-situ samples is shown in Figure 2 and 
exemplary photographs in Figure 3.

The survey team collected comprehensive informa-
tion about land cover conditions at 2,142 different 
“sample” locations in situ (see Table 1 and Figure 2). 
Photographs and locations recorded with a Global 
Positioning System (GPS), using Garmin Etrex 30x, 
and a location accuracy of circa 2–3 m were taken at 
each location and later complemented by on-screen 
collected reference data (see section 4.1.2 and). On 
each site, vegetation cover, species composition, and 
soil condition were recorded. The sites were selected 
to be homogeneous landscapes within a radius of at 
least 100 meters around the visited location. The Land 
cover Classification System (LCCS) developed by the 
United Nations (UN) Food and Agriculture 
Organization (FAO) (Di Gregorio and Jansen 2005) 
served as the basis for distinguishing land cover 
classes. It was adjusted and extended to contain infor-
mation about 17 distinct land cover classes 

Figure 1. Study area. Source of data sets: SIC-ICWC (Aral Sea, Aral Sea Basin), OpenStreetMap (Rivers), NaturalEarth (Country borders).
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(Dukhovny et al. 2008), which were identified as rele-
vant for describing the surface types and their asso-
ciated eolian erosion risk. The original 17-class 
schema was later reduced to 10 classes (see sec-
tion 4.1.2).

Figure 3 exemplarily shows photographs of differ-
ent land cover categories observed in the Aralkum.

3.2. Satellite data

3.2.1. Landsat-8 satellite images
The data used to create the land cover maps included 
Landsat 8 Operational Imager (OLI) data (Table 2 and 
Figure 4). The Landsat-8 OLI images contain five visi-
ble and near-infrared (VNIR) bands, three short-wave 
infrared (SWIR) bands, and two thermal infrared (TIR) 
bands. The analysis-ready dataset, i.e. the United 
States Geological Survey (USGS) Landsat 8 Surface 
Reflectance Tier 1 product, is atmospherically cor-
rected surface reflectance from the Landsat 8 OLI/ 

TIRS sensors. The data was atmospherically corrected 
by USGS using the C-Function of Mask (CFMask) algo-
rithm for Landsat-8 (Foga et al. 2017) and includes 
a cloud, cloud and topographic shadow, water and 
snow mask, as well as a per-pixel saturation mask. 
Strips of collected data are packaged into overlapping 
“scenes” covering approximately 170 km x 183 km 
using a standardized reference grid. Both data sets, 
Landsat-8 and 5, were from 2020.

3.2.2. Sentinel-1 satellite data sets
The Sentinel-1 mission is a constellation of two 
polar-orbiting satellites, operating day and night 
performing C-band synthetic aperture radar ima-
ging, enabling them to acquire imagery regardless 
of the weather (Figure 4). The Sentinel-1 C-band 
operates at a central frequency (ν) of 5.404 GHz in 
the microwave portion of the electromagnetic 
spectrum corresponding to a wavelength (λ) of 
5.55 cm (ESA 2021a). Over the study area, 

Figure 2. Uzbek part of the Aralkum, i.e. area within the shoreline of the Aral Sea in circa 1960 (source: SIC-ICWC), and location of the 
reference data locations that were collected in the field in 2019 (green dots) and 2020 (yellow stars). The map coordinate system is 
World Geodetic System (WGS) 1984 (geographic coordinates), the source of the reference data is SIC-ICWC, the source of the city 
locations is NaturalEarth, the image backdrop is a Landsat-8 OLI image from Aug-Sep 2019 (source: NASA/USGS).
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Sentinel-1 acquisitions are in the so-called inter-
ferometric wave (IW) mode, which registers the 
backscattering of a vertically transmitted micro-
wave signal in a vertical and horizontal receiver, 
creating a vertical transmit and vertical receive (VV) 
and vertical transmit and horizontal receive (VH) 
polarized band, respectively (ESA 2021a). The two- 
satellite constellation offers a 6-day exact repeat 
cycle at the equator (ESA 2021a). Since the orbit 
track spacing varies with latitude, the revisit rate is 
significantly greater at higher latitudes than at the 
equator. Starting from the Ground Range Detected 
(GRD) Level-1 product, the data was pre-processed 
with the Sentinel-1 Toolbox (ESA 2021b) through a) 
thermal noise removal, b) radiometric calibration, 

and c) terrain correction to create geocoded, back-
scatter coefficients (σ0) with 10 m pixel spacing 
(ESA 2021a).

3.2.3. Sentinel-2 satellite data sets
Sentinel-2 with its Multi-Spectral Instrument (MSI) is 
a wide-swath, high-resolution, multi-spectral imaging 
mission (ESA 2021c) (Table 2 and Figure 4). The full 
mission specification of the twin satellites (Sentinel- 
2A and 2B) flying in the same orbit but phased at 180°, 
is designed to give a high revisit frequency of 5 days. 
Sentinel-2 carries an optical instrument payload that 
samples 13 spectral bands: four bands at 10 m, six 
bands at 20 m and three bands at 60 m spatial resolu-
tion (Table 3). The orbital swath width is 290 km (ESA 
2021d). Atmospherically corrected Sentinel-2 images 
(MSI Level-2A) were obtained from the ESA/ 

Class 1: Water surface (deep water), no 
vegetation cover

Class 2: Shallow water, sometimes 
covered with reed vegetation

Class 3: Marsh and shore solonchaks, 
without vegetation

Class 4: Solonchak soil with blown sand 
cover, no vegetation

Class 5: Sandy soil poorly fixed substrate, 
plain (with shell rock), with sparse bushes

Class 6: Desert crust-puffed soil, without 
vegetation, partly sparse spots of bushes

Class 7: Hilly, hilly-ridge, poor-fixed with 
ephemeral-wormwood-bush communities, 

subjected to desertification

Class 8: Meadow on alluvial plains (reedy, 
forb-Gramineae) on alluvial-meadow, bog-

meadow and meadow-bog soils, mostly 
dense reed stands (dry or inundated)

Class 9: Shrubland subjected to 
desertification

Class 10: Dense shrubland (e.g. Tamarisk Karabarak), or artificial plantations

Figure 3. Photographs from ten major land cover categories in the Aralkum, collected during field surveys in 2019 and 2020.
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Table 1. Final class legend and samples of the land cover maps with 10 distinct classes, originating from a 17-class legend proposed by 
Dukhovny et al. (2008).

ID Name Description
Number of reference 

sample locations

1 Water Water surface (deep water), no vegetation cover 76
2 Shallow water Shallow water, sometimes covered with reed vegetation near the shoreline 98
3 Marsh/shore 

solonchak
Marsh and shore solonchaks, without vegetation, usually close to the shore line, partly thick and 

visible surface salt crusts
65

4 Solonchak Solonchak soil with blown sand cover, no vegetation 196
5 Sandy soils with 

sparse vegetation
Sandy soil poorly fixed substrate, plain (with shell rock), with sparse bushes 180

6 Desert soils-1 Desert crust-puffed soil, without vegetation, partly sparse spots of bushes 92
7 Desert soils-2 Hilly, hilly-ridge, poor-fixed with ephemeral-wormwood-bush communities, subjected to 

desertification, partly dunes
521

8 Meadow Meadow on alluvial plains (reedy, forb-Gramineae) on alluvial-meadow, bog-meadow and meadow- 
bog soils, mostly dense reed stands (dry or inundated)

98

9 Shrubland-1 Shrubland subjected to desertification 354
10 Shrubland-2 Dense shrubland (e.g. Tamarisk Karabarak), or artificial plantations 478

Figure 4. Illustration of the satellite input data (predictor variables) used for the experiments in 2020. Left: Sentinel-1, middle: Sentinel- 
2, and right: Landsat-8.

Table 2 .:Major characteristics and multi-spectral band description of Landsat-8 and Sentinel-2.
Item Landsat-8 Sentinel-2

Swath 185 * 180 km 290 km
Altitude 705 km 768 km
Revisit 16 days 10 days (Sentinel-2A), 5 days (Sentinel-2A/B)
Band Band width [nm]/Spatial resolution [m] of Landsat- 

8
Center wavelength [nm]/Spatial resolution [m] of Sentinel- 

2A
Band 1 – Coastal aerosol 433–453/30 m 443/60 m
Band 2 – Blue 450–515/30 m 490/10 m
Band 3 – Green 525–600/30 m 550/10 m
Band 4 – Red 630–680/30 m 665/10 m
Band 5 – Vegetation red edge1 - 705/20 m
Band 6 – Vegetation red edge2 - 740/20 m
Band 7 – Vegetation red edge3 - 783/20 m
Band 8 – NIR - 842/10 m
Band 8A – Narrow NIR 845–885/30 m 865/20 m
Band 9 – Water vapor - 945/60 m
Band 10 – SWIR – Cirrus 1,360–1,390/30 m 1,375/60 m
Band 11 – SWIR1 1,560–1,660/30 m 1,610/20 m
Band 12 – SWIR2 2,100–2,300/30 m 2,190/20 m
Panchromatic 500–680/15 m -
Thermal band TIRS 1 10,600–11,200/100 m -
Thermal band TIRS 2 11,500–12,500/100 m -
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Copernicus portal (ESA 2021e). Only the 10 and 20 m 
bands were used for this study, while the coarser 
bands were omitted to be better comparable to 
Landsat-8.

4. Methods

We created land cover maps, based on different satel-
lite data inputs, with ten land cover classes for 
the year 2020. We quantified the accuracy and uncer-
tainty of our classifications and summarized and dis-
cussed land cover in the Aralkum, as well as potential 
applications of this method to support environmental 
monitoring assessments.

4.1. Land cover classification

Our land cover classification for the Aralkum com-
bined cloud-based (Google Earth Engine) processing 
for the pre-processing of the satellite data and local 
computing approaches (using the software R) to clas-
sify, validate, post-process, and map the classes.

The necessary processing steps are described 
below and illustrated in the flowchart in Figure 5. 
First, the reference data was collected during in- 
situ field campaigns in the Aralkum, one in 2019 
and another one in 2020 (see section 4.1.2). During 

Table 3. Conducted classifications, datasets included on each 
classification and comparisons made to find a suitable subset to 
map land cover in the Aralkum.

Name Sensor(s) Description

Number of time 
steps (temporal 

composites)

Number of 
predictor 
variables

Set A Landsat-8 Bands, NDVI, 
NDWI, TCT, SI

3 39

Set B Sentinel-2 Bands, NDVI, 
NDWI, TCT, SI

3 48

Set C Landsat-8, 
Sentinel-2

Bands, NDVI, 
NDWI, TCT, SI

3 +3 87

Set D Sentinel-1 VV, VH, Ratio 24 72
Set E Landsat-8, 

Sentinel- 
2, 

Sentinel-1

Bands, NDVI, 
NDWI, TCT, SI 
VV, VH, Ratio

28 159

Figure 5. :Methodological approach for land cover classification. The image pre-processing was done in Google Earth Engine (blue), 
the analytical steps in the software R and on a local machine (Orange).

GISCIENCE & REMOTE SENSING 7



these two campaigns, a total of 2,142 ground (in- 
situ) samples were collected. The reference data 
was then complemented on-screen and further 
enhanced with a synthetic minority over-sampling 
technique (SMOTE) (Chawla et al. 2002). We 
defined ten distinct land cover classes (see) for 
our classification and evaluated several input data 
sets from different satellite systems (Sentinel-1 and 
2, and Landsat-8), which we classified with 
a Random Forest algorithm. The land cover maps, 
based on different inputs, where evaluated in 
terms of an accuracy assessment and a spatial 
measure of classification uncertainty was provided.

4.1.1. Calculation of predictor variables
The following steps were done in Google Earth Engine 
(Gorelick et al. 2017). We used the atmospherically 
corrected Landsat-8 and Sentinel-2 images to create 
a stack of images for 2020, the year for which we 
collected most of the in-situ data. We first calculated 
the percentage of area affected by cloud or cloud 
shadow (no-data pixels) for each optical image. 
These calculations used the CFMask algorithm for 
Landsat-8 and applied the ‘QA60ʹ flag provided in 
the Sentinel-2 metadata by ESA. Images with percen-
tages above 90% of no-data pixels and images with-
out orthorectification according to their metadata 
were not processed. We then applied the CFMask 
algorithm (Landsat) and the ESA Sentinel ‘QA60ʹ flag 
to mask clouds, cloud-shadows, snow, and dust/haze. 
Each stack consequently contained different valid 
observations at the pixel-level, depending on cloud, 
snow and haze/dust.

Different spectral indices were then calculated and 
appended to the cloud-free Landsat-8 and Sentinel-2 
image stacks, along with the spectral bands for use in 
land cover classification. To capture differences in 
land cover with optical sensors, we calculated vegeta-
tion indices (VI). Vegetative cover can be derived by 
applying such indices (e.g. the NDVI, see equation 1) 
(Rouse et al. 1974), which was also used in several 
studies about the Aralkum (Kim et al. 2020; Löw et al. 
2013; Shen et al. 2019): 

NDVI ¼
%NIR � %Red

%NIR þ %Red
(1) 

where NIR is the near-infrared and Red the red multi-
spectral bands of the satellite sensors (see Table 2).

The Normalized Difference Water Index (NDWI, 
equation 2) (Gao 1996), also used in a previous 
Aralkum study (Shen et al. 2019), was selected to 
capture the subtler differences in vegetation vigor 
and potentially also in soil moisture: 

NDWI ¼
%NIR � %SWIR

%NIR þ %SWIR
(2) 

where SWIR is the shortwave infrared and NIR the 
near-infrared multispectral bands of the satellite sen-
sors (see Table 2).

The Salinity Index (SI, equation 3) (Gorji, Sertel, and 
Tanik 2017) was utilized to improve the mapping of 
marsh solonchak and solonchak soils as well as the 
separation of non-saline, sandy and bare soils: 

SI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%Blue � %Red
p

(3) 

where Blue is the blue and Red the red multispectral 
bands of the satellite sensors (see Table 2).

The Tasseled Cap Transformation (TCT) is 
a technique commonly used in land cover mapping 
or other classification applications (Kauth and Thomas 
1976). It takes the linear combination of satellite ima-
gery bands and a specialized coefficient matrix to 
create a n-band image with the first three bands 
containing the majority of the useful information, 
similar to Principal Component Analysis (PCA). The 
first three bands represent brightness, greenness, 
and wetness, respectively. The coefficient matrix, 
which is unique to each imaging sensor, is based on 
image statistics and empirical observations. 
Brightness, greenness, and wetness indices were cal-
culated for the Landsat-8 (Baig et al. 2014) and 
Sentinel-2 data (Shi and Xu 2019).

We kept the atmospherically corrected, multi- 
spectral bands with a spatial resolution of 10–30 m 
from the Landsat-8 (7 bands) and Sentinel-2 (10 bands) 
images, respectively, and harmonized the spatial reso-
lution of the input datasets to a common pixel size of 
10 m for all sensors using nearest neighbor resampling.

Maximum value composites were then produced 
by computing the maximum value of every predictor 
variable (multi-spectral bands, NDVI, NDWI, SI, and 
TCT indices) at the pixel-level in three distinct epochs, 
guided by data availability: (i) Epoch-1 between 
March and May, (ii) epoch-2 June–August, and (iii) 
epoch-3 between September and November. Gaps 
which occurred due to the previous masking of 
clouds, were thereby temporally filled.
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For the Sentinel-1 data, we first applied speckle 
filtering using a Lee Sigma with a 5 × 5 window to 
the VV and VH bands, respectively, and then com-
puted bi-monthly maximum composites of the fil-
tered VV and VH polarized bands to reduce the 
amount of data. In addition, we computed the ratio 
of VV to VH as predictor variable.

We tested different combinations (“sets”) of vari-
ables as predictors in the classification (Table 3). 
Under Set A, the multi-spectral bands, NDVI, NDWI, 
SI, as well as the TCT indices were calculated based on 
the Landsat-8 composites. Set B uses the same 
approach but is based on Sentinel-2 composites, 
while Set C combines Set A and Set B. Set D is exclu-
sively composed of Sentinel-1 bi-monthly composites 
(VV, VH, and ratio). Finally, Set-E combines all optical 
(Set-C) and SAR (Set-D) sets, i.e. 159 predictor 
variables.

4.1.2. Preparation of reference data
The final class legend used for mapping consisted of 
10 instead of 17 classes, as originally recorded during 
the field surveys (). After considering the constraints 
that the broad spectral resolution of the Landsat-8 
and Sentinel-2 sensors impose when used for classify-
ing spectrally similar land cover classes, especially 
different salt soils, and based on initial tests (not 
reported here), we decided to skip or merge some 
classes.

In addition to the reference data from ground sam-
pling, sample locations were collected remotely for 
different classes in the whole study area due to the 
relative inaccessibility of these areas. This was done 
by visually interpreting high-resolution images (such 
as Google Maps) and different band combinations of 
Landsat-8 and Sentinel-2 images from 2020. In the 
same way, some outliers or samples from the field 
surveys represented by mixed pixels were removed.

As an additional means of quality control for the 
reference data, homogeneous regions in terms of 
reflectance were identified with a K-medoids cluster-
ing (Kaufman and Rousseeuw 1990). For this purpose, 
the predictor variables listed in Table 3 (Set-C) were 
used as input. Based on the structural Silhouette 
technique, the optimal number of clusters was auto-
matically determined (Chiang and Mirkin 2010). Then, 
a circular buffer of 120 m was created around each 
reference data point (GPS or on-screen collected) and 

the sample was only kept for homogeneous regions 
(i.e. only one cluster was allowed to be present in the 
120 m buffer area around the sample point location).

For the validation data, 50% of the samples (includ-
ing the circular buffer area) were randomly set aside 
for the accuracy assessments per land cover category, 
the remaining samples were used for training of the 
classifier algorithms. One hundred points were ran-
domly created inside the validation samples per land 
cover category and used to assess the accuracy of the 
maps (see section 4.2).

Despite the extensive in-situ and additional on- 
screen sampling, the number of training locations of 
some land cover class was small. This is attributed to 
the fact that the area is partially not well accessible. In 
the context of supervised classification, imbalanced 
training samples are often handled by over- and 
undersampling to achieve a more balanced training 
data set. Hence, classification was done using 
a balanced training dataset in which all classes had 
the same number of training samples as the majority 
class category.

In this study, we applied SMOTE (Chawla et al. 
2002) in the programming software R (within the 
“DMwR” package, version 0.4.1) to generate synthetic 
calibration samples. SMOTE’s core idea is to artificially 
generate new samples of the minority class using 
bootstrapping and k-nearest neighbors. As a hybrid 
method, SMOTE features both oversampling of the 
minority class and under sampling of the majority 
class (Waldner, Jacques, and Löw 2017). SMOTE was 
chosen because it was found to increase classification 
accuracy in previous studies (Johnson, Tateishi, and 
Hoan 2013; Johnson and Iizuka 2016; Pozi et al. 2015).

4.1.3. Land cover classifications
We used a RF classifier (Breiman 2001) in the program-
ming language R (as implemented in the 
“randomForest” package, version 4.6–14) to classify 
the input data and to map the land cover classes. 
RFs generate a multitude of decision trees by ran-
domly drawing samples with replacement from the 
training data and determining the best split at each 
decision tree node by considering a maximum num-
ber of randomly selected features (“max features”). 
We tested different parameter ranges for the number 
of trees and for “max features” and finally used 300 
trees and 10% of the input features considered at 
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each split to parameterize the RF classification mod-
els. We trained a RF model for each of the distinct 
input data sets A-E (see Table 3).

To enhance the reliability of the experiments, i.e. to 
avoid overfitting and increase the robustness of our 
results, each classification with RF was repeated 100 
times using different folds of the training data set. For 
each fold, we performed a land cover classification 
using only 85% of the training data (note that the 
validation dataset was not subsampled as it was only 
used to validate the final ensemble of the indepen-
dent classifications). The mode of the 100 indepen-
dent classifications was used as the most-likely land 
cover class for every pixel at each time-step, and 
validated with the independent validation data.

4.1.4. Post-classification
We used an erosion-dilation kernel of radius 1 in the 
programming language R (implemented in the “terra” 
package, version 1.3–4) eroding three times and dilat-
ing twice was then applied to smooth the land cover 
maps and remove isolated pixel noise (“salt and pep-
per,” see Figure 6) (d’Andrimont et al. 2020).

4.2. Accuracy assessments and land cover change 
analysis

We evaluated the classification results with the 100 
samples per land cover category (see section 4.1.2), 
applying standard accuracy assessment metrics based 
on error matrices (Congalton 1991). We followed the 
best practice recommendations for assessing 

classification accuracies and area estimation 
(Olofsson et al. 2014), as well as those for calculating 
accuracy estimates with confidence intervals (Foody 
2009). We calculated the following metrics to assess 
the accuracy of the different classifier models, using 
the caret package (Kuhn 2012) in R:

● Overall classification accuracy including 95% 
confidence intervals

● Kappa coefficient of covariation
● User´s (UA) and producer´s (PA) classification 

accuracy
● Class-wise F1 scores, the harmonic mean 

between UA and PA (Van Rijsbergen 1979)

The overall accuracies achieved by the different clas-
sification approaches were reported at 95% confi-
dence intervals. The confidence interval of the 
difference (inequality, equation 4) in overall accuracy 
values between two classifier algorithms is be 
given as: 

p1 ¼ p0 � za=2SEp1� p0 (4) 

where SEp1� p0 is the standard error of the difference 
between two estimated proportions with z ¼ 1.96 
and α ¼ 0.05. p1 and p0 are the proportions of cor-
rectly classified test samples of the two classifiers 
under comparison. Using confidence intervals reveals 
more information about the disparity in the com-
pared classification accuracy values (Foody 2009).

Figure 6. :Example of the effect of the post-classification procedure on the land cover map. Original land cover map (left) and filtered 
land cover map (right).
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Besides the final class label non-parametric algo-
rithms like RF can give, for each classified object or 
pixel x, a soft answer that provides an estimation of 
the membership degrees of x to the land cover cate-
gory (Giacco et al. 2010). In the RF framework it is 
defined as the number of trees in the RF ensemble 
contributing to the final class (Loosvelt et al. 2012). 
This membership degrees is in the form of a vector 
(equation 5), which contains the class membership 
estimations associated with x: 

pr xð Þ ¼ p1; p2; . . . ; pi; . . . ; pn

� �
(5) 

where pi is the membership degree of x to class i, and n 
the number of land cover classes. Each of the elements in 
pr xð Þ can be interpreted as a degree of belief or prob-
ability that a case x actually belongs to class i. In this 
study two measures of uncertainty were calculated from 
each vector pr xð Þ. These are based on the maximum 
posterior classification probability value in pr xð Þ, 
prmax xð Þ, and the α -quadratic entropy (Pal and 

Bezdek 1994). The maximum probability prmax xð Þ
belongs to the class i that is usually taken as the final 
class when the soft results are transformed into a hard 
one. E ¼ 1 � prmax xð Þ gives a measure of doubt that 
can be used to quantify map uncertainty. The α- 
quadratic entropy (equation 6) is defined as 

H/ pr xð Þð Þ ¼ 1 �
1

n � ð2� 2/Þ
�
Xn

i¼1

p/i xð Þ 1 � pi xð Þð Þ
/

� 100

(6) 

where pr xð Þ is the vector that contains the soft outputs, 
n the number of classes, and α an exponent that 
determines the behavior of H/ pr xð Þð Þ.The advantage 
of this measure is that it summarizes all the information 
contained in pr xð Þ, and commits the probabilities of the 

other classes in the uncertainty evaluation. It also has 
a higher sensitivity compared to other measures such 
as the Shannon entropy H (Foody 1995) when the 
components of pr xð Þ change. When values of / in- 
crease from 0 to 1, then H/ pr xð Þð Þ will become more 
and more selective if the components in pr xð Þ tend 
toward equalization. In this study, / = 0.75 was cho-
sen to impose a stronger penalty under such a scenario.

Finally, the ratio of the observed to the maximum 
possible H/ pr xð Þð Þwas normalized to a scale of [1–100]. 
If a pixel is found to have maximum probability (mini-
mum entropy) of belonging to one class ( prmax xð Þ ¼ 1) 
then it will have an alpha score H/ pr xð Þð Þ of 100. 
H/ pr xð Þð Þ was calculated for each class per input data 
set tested and maps of H/ pr xð Þð Þ values were created 
to visualize spatial variations in the reliability of land 
cover mapping (also referred to as map uncertainty).

5. Results

5.1. Accuracy assessment of the land cover 
classification

The influence of the selected predictor variables, as 
defined by five distinct input data sets (A-E), was 
observed and expressed as variability in classification 
accuracy and uncertainty. For instance, at a global level 
(see Table 4), the overall accuracy for the 2020 land 
cover maps, based on different sets of predictor vari-
ables, ranged from 85.3% (Set-B, Sentinel-2) to 88.8% 
(Set-E, all data sets combined). Comparing all input data 
sets, the average overall accuracy was 86.8%, while the 
overall accuracy of the land cover map based on the 
combined optical and SAR predictor variables (Set-E) 
was highest (88.8%). In terms of statistical significance, 
however, there is no significant difference among all 
models tested at the 95% confidence level and when 
looking at overall accuracy, as indicated by the over-
lapping 95% confidence intervals.

At a land cover class level, accuracies based on differ-
ent input data sets varied more as compared to the 
overall accuracies (see Table 5). Among the different 
input data sets, Set E (all data sets combined) achieved 
the highest F1 scores for most of the land cover cate-
gories (seven out of ten). For instance, the F1 scores for 
Set E varied from 0.740 to 1.00 for “Solonchak” and 
“Water,” respectively. The same pattern was found for 
other input data sets. “Water,” “Shallow water,” “Marsh/ 
shore solonchaks,” and “Meadow” tended to have the 

Table 4. Overall classification accuracies for different input data 
sets (predictor variables) in 2020. The maximum overall classifi-
cation accuracy value (representing highest accuracy in the land 
cover maps) among the input data sets for a given class is 
boldface.

Sets of predictor variables 
validated

Overall 
accuracy Kappa

LI 
95%

UI 
95%

Set-A (Landsat-8) 0.861 0.830 0.847 0.875
Set-B (Sentinel-2) 0.853 0.820 0.838 0.866
Set-C (Landsat-8, Sentinel-2) 0.866 0.838 0.853 0.878
Set-D (Sentinel-1) 0.873 0.845 0.859 0.885
Set-E (Landsat-8, Sentinel-2, 

Sentinel-1)
0.888 0.865 0.876 0.899

Average 0.868 0.838 0.855 0.881
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highest F1 scores, while other land cover categories with 
no or only sparse vegetative cover (e.g. “Desert soils-1”) 
tended to have the lowest. “Shrubland-1” and 
“Shrubland-2” were mapped with relatively high accura-
cies (F1 scores > 0.85 for all input data sets tested).

Table 6 presents the median alpha scores H/ pr xð Þð Þ

for different land cover classes and Figure 7 illustrates 
the spatial variability of classification uncertainty. Low 
levels of uncertainty, expressed by high alpha scores, 
were present in large areas of homogeneous land 
cover such as “Water,” “Marsh/shore Solonchaks,” 
“Solonchaks,” or “Meadow.” Conversely, areas with 

spatially complex landscapes tended to present med-
ium to low alpha scores i.e. the classifier assigned 
different land cover classes to the same pixel with 
similar probability. This was especially apparent in the 
vast transition zones between the salt soils (e.g. 
“Marsh/shore solonchaks” and ”Solonchaks”) and 
other, non-vegetative land cover types (see Figure 7) .

Similar to the F1-scores (Table 5), combining all 
predictor variables decreased the classification uncer-
tainty. Set E had the highest alpha scores (lowest 
uncertainty) in four out of ten land cover classes (see 
Table 6).

Table 5. F1 scores for different input data sets (predictor variables) in 2020. The maximum F1-score value (representing highest per- 
class-accuracy in the land cover maps) among the input data sets for a given class is boldface. 1 = Water, 2 = Shallow water, 3 = 
Marsh/shore solonchak, 4 = Solonchak, 5 = Sandy soils with sparse vegetation, 6 = Desert soils-1, 7 = Desert soils-2, 8 = Meadow, 9 = 
Shrubland-1, 10 = Shrubland-2.

Sets of predictor variables validated

F1-scores of different land cover categories

1 2 3 4 5 6 7 8 9 10 Median

Set A (Landsat-8) 1.000 0.768 0.878 0.685 0.861 0.805 0.930 0.879 0.863 0.878 0.870
Set B (Sentinel-2) 0.991 0.816 0.869 0.950 0.823 0.774 0.895 0.844 0.857 0.858 0.857
Set C (Landsat-8, Sentinel-2) 0.980 0.931 0.864 0.951 0.834 0.834 0.932 0.874 0.864 0.880 0.877
Set D (Sentinel-1) 0.980 0.954 0.878 0.928 0.828 0.791 0.932 0.845 0.855 0.867 0.873
Set E (Landsat-8, Sentinel-2, Sentinel-1) 1.000 0.852 0.918 0.740 0.895 0.844 0.937 0.869 0.873 0.886 0.880

Table 6. Median values of the alpha score H/ pr xð Þð Þ calculated from the total of classified pixels, for each of the land cover classes and 
different sets of predictor variables. The maximum alpha score value (representing a minimum of uncertainty in the land cover maps) 
among the input data sets for a given class is boldface. The first value given is the F1 score, the second value the alpha score 
H/ pr xð Þð Þ. 1 = Water, 2 = Shallow water, 3 =Marsh/shore solonchak, 4 = Solonchak, 5 = Sandy soils with sparse vegetation, 6 = Desert 
soils-1, 7 = Desert soils-2, 8 = Meadow, 9 = Shrubland-1, 10 = Shrubland-2.

Sets of predictor variables validated

Median alpha scores H/ pr xð Þð Þ for different land cover categories

1 2 3 4 5 6 7 8 9 10 Median

Set-A (Landsat-8) 53.33 13.69 48.33 21.97 21.99 18.26 51.27 22.81 18.34 21.13 21.98
Set-B (Sentinel-2) 54.10 14.05 45.67 23.02 24.61 17.97 59.19 22.58 17.78 21.78 22.80
Set-C (Landsat-8, Sentinel-2) 56.22 13.56 49.41 22.67 25.57 19.05 56.02 23.91 18.64 22.67 22.67
Set-D (Sentinel-1) 47.51 15.14 22.86 17.36 20.83 14.59 46.73 18.23 15.79 16.18 17.79
Set-E (Landsat-8, Sentinel-2, Sentinel-1) 73.15 13.91 49.77 22.55 25.72 18.55 55.44 23.32 19.08 22.63 23.20

Figure 7 .:Per-pixel land cover classification and classification uncertainty, based on different input data sets in 2020.
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5.2. Land cover area assessment

The resulting land cover map revealed that in 2020, 
approx. 9% of the Aralkum territory was covered by 
water (compare also Table 7). This confirms the signifi-
cant loss in the lake’s surface area found in other studies, 
as well as continued shrinking of the water surface; in 
2015, for example, surface area still approximated 14%, 
as measured with Landsat data (Shen et al. 2019).

The area of strong salt accumulation in the topsoil, 
including salt crusts, covered a large fraction of the 
total Aralkum (~32%), while shrublands could be 
found on ~16% of the area (Table 7). While the area 
of salty soils increased compared to 2015 (Shen et al. 
2019), which can be explained by the continued 
decrease of the water level (Singh et al. 2018), the 
area of shrubland differs from Shen et al. (2019) (2%) 
but is more in the range of Löw et al. (2013) (16%). The 
difference can be explained by a continued increase 
in the vegetative cover (Kim et al. 2020), but also by 
the different definition of land cover classes like shrub 
cover. The combined area of “shrubland” and “grass-
land” in the study of Shen et al. (2019) is in fact 15%, 
and our shrubland categories contain different abun-
dancies of shrubland including herbaceous 
vegetation.

The desiccation of the Aral Sea is accompanied by 
a sinking groundwater table and conversion of marsh 
solonchak to more sandy soils (Wucherer and Breckle 
2001), a process that is characterized by increasing 
salinization (Novikova and Aldyakova 2006). For this 
reason, ”March/shore solonchaks” are most often 
found directly adjacent to the remaining water or in 
the shallow eastern part of the Aralkum, which 
becomes periodically inundated, depending on the 
inflow of the Amudarya river (Micklin 2016). With 
continued desiccation, soil particles are exposed, 
moisture is lost, and sandy soils proliferate (Stulina 
and Sektimenko 2004). This is reflected by a spatial- 
temporal sequence of different soil types on the 
exposed seabed that can be seen in our maps: auto-
morphic to hydromorphic solonchaks closer to the 
shoreline (”March/shore solonchaks”) and desert 

sandy soils or sands and dunes at a greater distance 
from the coastline (Figure 8). Over time, salt soil tends 
to shift to bare area (Löw et al. 2013; Shen et al. 2019). 
We purposefully distinguish between different salt 
affected soil categories, not only due to significant 
differences in wind erodibility, but also because they 
reflect these processes. It has been shown that the 
two types of land cover (salt vs. bare) do not always 
change in one direction (sand soil to bare area), but 
can also switch from bare area to salt soil (Shen et al. 
2019). Finally, as vegetative encroachment continues, 
shrub vegetation might establish and secure the 
loose sandy top soils, ultimately decreasing the soil 
erosion risk (Dukhovny et al. 2008).

6. Discussion

6.1. Potential Application of Data and Methods

Our results provide a comprehensive land cover and 
uncertainty map with ten dedicated classes for the 
Aralkum. Until now, such data was available only at 
coarse-spatial resolution or limited to smaller geo-
graphic areas (e.g. Löw et al. 2013, 2016) and lacked 
confidence information at pixel level. Studies using 
historical multiclass information at finer resolution 
(30 m) were found to be accurate but have been 
limited to only a few land cover classes (e.g. Shen 
et al. 2019), hindering the detailed assessment of 
different risk levels of soil erosion as previously pro-
posed for the Aralkum (Dukhovny et al. 2008).

The high resolution and accuracy of our map com-
bined with the per-pixel confidence layer make it 
suitable for assessing land cover and land cover 
change, and it can become a basis for other methods 
to assess erosion risk in the Aralkum. Mapping soil 
erosion risk could be used for spatially targeting affor-
estation measures, an appropriate method for redu-
cing the effects of soil salinization in the Aralkum (An 
et al. 2020). Several strategies for afforestation and 
restoration of the former Aral Sea bed were presented 
by several agencies and projects (Roll et al. 2003), 
such as the joint project “Addressing the urgent 

Table 7. Land cover area in 2020 (square kilometers, sqkm) for the 2020 land cover classification, based on input data “Set-E.” 
1 =Water, 2 =Shallow water, 3 =Marsh/shore solonchak, 4 =Solonchak, 5 =Sandy soils with sparse vegetation, 6 =Desert soils-1, 
7 =Desert soils-2, 8 =Meadow, 9 =Shrubland-1, 10 =Shrubland-2.

Land cover category 1 2 3 4 5 6 7 8 9 10 Sum

Area [sqkm] 5,902 221 8,739 12,615 8,200 1,400 17,651 811 3,904 7,057 66,500
Percentage 8.87 0.33 13.14 18.97 12.33 2.10 26.54 1.22 5.87 10.61 100
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human insecurities in the Aral Sea region through 
promoting sustainable rural development” of the 
United Nations Development Programme (UNDP) 
and the United Nations Educational, Scientific and 
Cultural Organization (UNESCO) (UNDP-UNESCO 
2021). While selecting potential afforestation sites 
requires the recording of several parameters such as 
soil moisture, terrain, or salinity, areas with high ero-
sion risk should also be included. The land cover map 
generated in this study is a suitable input for guiding 
these measures in the vast Aralkum area.

Due the timespan and resolution of Landsat data, the 
proposed method is additionally suitable for back- 
tracing changes in land cover, soil erosion risk, and 
ongoing desertification. Although the inclusion of 
Sentinel-1 Synthetic Aperture Radar (SAR) data increased 
the accuracy of the maps, the use of features from the 
Landsat-8 satellite performed nearly as well and could be 
applied to track land cover change in the years preced-
ing the Sentinel missions in 2014. Supplementing with 

Figure 8 .:Detailed overview of the 2020 land cover map showing the western basin of the former Aral Sea (A), land cover classification 
(B), per-pixel alpha score, which is high in landscapes with higher top-soil salt accumulation (e.g. shore solonchaks with visible salt 
crust) and low especially in the transition zones between the highly salt affected landscapes and the mostly non-vegetated landscapes 
around (other solonchaks without salt crust, sandy soils).
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Landsat-5 or decision fusion with the Moderate 
Resolution Imaging Spectroradiometer (MODIS) instru-
ments (Löw et al. 2017) may help to compensate for the 
lack of the SAR data in previous years.

6.2. Accuracy, uncertainty, and its sources

Besides enhancing the spatial resolution of available 
land cover information in the Aralkum (10 m), we 
provided a recent land cover map in 2020 with higher 
classification accuracies and spatial resolution, as 
compared with previous studies (Löw et al. 2013; 
Shen et al. 2019). Our mapping product additionally 
offers previously unavailable per-pixel confidence 
information. With the exception of “Shallow water” 
and “Solonchaks,” the F1 scores presented similar 
magnitudes for every class, indicating accurate esti-
mations of land cover area.

In the case of the mostly non-vegetated land cover 
classes, commission and omission errors achieve 
lower accuracies, and are related to the semantic 
representation and generalized definition of the real- 
world land cover classes and the presence of large 
transitions zones between salty soils, sandy soils and 
vegetated areas. We defined our land cover classes to 
comply with the proposed scheme of assigning land 
cover categories to certain erosion risk classes 
(Dukhovny et al. 2008). In this context, 
a compromise is made between the reliability of the 
method for classifying distinct land cover categories 
(e.g. water and shrublands) and those that present 
similar spectral characteristics but needed to be sepa-
rated to allow for a proper risk class assignment.

While restricting the number of predictor variables 
and increasing the training sample size used in the 
SMOTE classification or adding other predictor vari-
ables (different vegetation indices) may have 
increased the accuracy of the final classification, the 
effect is likely to be minimal.

The land cover map has an associated alpha score, 
which we used as a proxy of per-pixel- classification 
confidence. Such maps provide useful information 
about the reliability of the classifications as well as 
for areas with higher uncertainty (i.e. low alpha 
scores). We strongly recommend using the spatial 
uncertainty indicator when making use of these 
maps and guiding decisions related to managing 
areas prone to high erosion risk in the Aralkum. In 
addition, per-pixel confidence maps provide 

information about the areas where more ground- 
truth data might be needed. Areas with high uncer-
tainty were similar across all tested input data sets 
and were most often concentrated in heterogeneous 
landscapes or in small patches. It should be further 
noted that due to the local conditions in the 
Aralkum and inaccessibility of some terrain, 
a random or stratified random sampling scheme 
could not be realized on ground. The sample was 
therefore subsequently balanced and enhanced by 
the SMOTE method. Previous studies found that 
SMOTE can improve the machine learning methods 
for remote sensing based land cover mapping 
(Douzas et al. 2019; Feng, Huang, and Bao 2019; 
Johnson and Iizuka 2016; Wang et al. 2019).

The mapping results also revealed further advan-
tages of the Sentinel 1 sensor over its optical coun-
terpart (Sentinel 2, Set B) and its suitability for 
classifying some land cover classes. “Shallow water” 
can be still distinguished from “Water,” since the 
backscatter coefficient is a mixed signal of specular 
reflection on the water surface and double-bounce 
signals from the reed vegetation with stems rising 
above the water surface, while the infrared informa-
tion of the optical sensor is absorbed in both classes. 
The dielectric constant, prominent in the top/sur-
face-layer of the saline “Marsh/shore solonchak” pro-
vides further information on salinity content in soils; 
when soil moisture is low, the imaginary part of the 
dielectric constant increases with salinity (Taghadosi, 
Hasanlou, and Eftekhari 2019), i.e. high absorption of 
energy, resulting in a lower backscatter coefficient 
σ0 (Hoa et al. 2019). Conversely, the high sensitivity 
to surface roughness and soil moisture content in 
the first 5 cm of the topsoil results in a higher back-
scatter intensity thereby aiding in the identification 
of different soil types, soil granularity and mixed 
vegetation types (Benninga, van der Velde, and Su 
2020).

7. Conclusion

We have evaluated several remote sensing-based pre-
dictor variables to map land cover at 10 m in the 
Aralkum in 2020, based on ground-truth data. The 
map is, to our knowledge, the first of its kind to be 
developed with ten distinct land cover classes for the 
Aralkum, and one of only a few of any kind available. It 
was created with a combination of optical (Sentinel 2, 
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Landsat 8) and SAR (Sentinel 1) satellite data and has 
an overall accuracy of 88.8%. Per-class F1 scores were 
0.88 on average (median) for ten land cover classes, 
underscoring the confidence of our estimates.

By exploiting the capabilities of GEE for analyzing 
huge amounts of data in the cloud, we have demon-
strated that time-series mapping of land cover over 
the large Aralkum area at high-spatial resolution is 
feasible. This land cover assessment framework is sui-
table for understanding land dynamics and identifying 
risk zones where mitigation measures such as large- 
scale afforestation could be implemented. It can in 
turn become the basis for decision-making and mon-
itoring of afforestation in targeted areas. To this end, 
our map provides a spatial indicator of classification 
accuracy that can guide the decision-making process.
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